login
A362725
a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ).
1
1, 5, 123, 3650, 118059, 4015380, 141175410, 5082313276, 186243853995, 6920379988871, 260030830600748, 9860709859708350, 376821110248674594, 14494688046084958080, 560708803489098556632, 21797478402692370515400, 851057798310071946207915, 33356751162583463626417872
OFFSET
0,2
COMMENTS
Compare with A362723.
It is known that the sequence of Apéry numbers A005259 satisfies the Gauss congruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k
>= 1} A005259(k)*x^k/k ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + ... has integer coefficients (see, for example, Beukers, Proposition, p. 143), and therefore a(n) = [x^n] E(x)^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that the present sequence satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.
More generally, we inductively define a family of sequences {a(i,n) : n >= 0}, i >= 0, by setting a(0,n) = A005259(n) and, for i >= 1, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n. In this notation the present sequence is {a(1,n)}.
We conjecture that the sequences {a(i,n) : n >= 0}, i >= 1, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(2*r)) for all primes p >= 3, and positive integers n and r.
LINKS
F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and positive integers n and r.
MAPLE
A005259 := proc(n) add(binomial(n, k)^2*binomial(n+k, k)^2, k = 0..n) end proc:
E(n, x) := series(exp(n*add((A005259(k)*x^k)/k, k = 1..20)), x, 21):
seq(coeftayl(E(n, x), x = 0, n), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 02 2023
STATUS
approved