login
A362705
Expansion of e.g.f. 1/(1 + LambertW(-x^3/6 * exp(x))).
2
1, 0, 0, 1, 4, 10, 60, 595, 4536, 34524, 361320, 4333725, 51214460, 651628406, 9448719644, 146868322055, 2376666773040, 41077757951000, 762599081332176, 14918668387075449, 305774990501285940, 6602482711971622210, 149921553418087172260, 3557552268845721893131
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-2*k) / (6^k * k! * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^3/6*exp(x)))))
CROSSREFS
Cf. A362351.
Sequence in context: A209030 A220824 A124724 * A323870 A298162 A203226
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 30 2023
STATUS
approved