login
A362641
Product of the smaller primes, p, in the Goldbach partitions of 2n such that p + q = 2n, p <= q, and p,q prime (or 1 if no Goldbach partition of 2n exists).
4
1, 2, 3, 3, 15, 5, 21, 15, 35, 21, 165, 385, 273, 55, 1001, 39, 2805, 7735, 133, 561, 13585, 273, 5865, 124355, 5187, 1265, 391391, 741, 27115, 19605131, 1767, 64515, 5766215, 217, 374187, 12212915, 313131, 170085, 142635185, 63973, 902451, 13147103255, 223041, 101065, 818183948197
OFFSET
1,2
FORMULA
a(n) = Product_{k=1..n} k^(c(k)*c(2n - k)), where c is the prime characteristic (A010051).
a(n) = Product_{p+q = 2n, p<=q, and p,q prime} p.
a(n) = A337568(n) / A362640(n).
EXAMPLE
a(10) = 21; 2*10 = 20 has two Goldbach partitions, namely 17+3 and 13+7. The product of the smaller parts of these partitions, is 3*7 = 21.
MATHEMATICA
Table[Product[k^((PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - k] - PrimePi[2 n - k - 1])), {k, n}], {n, 40}]
CROSSREFS
Cf. A010051, A045917, A337568 (product of all prime parts), A362640 (product of the larger primes q).
Sequence in context: A039793 A106243 A109203 * A039792 A076358 A208798
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 28 2023
STATUS
approved