OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..417
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: (x^2 / LambertW(x^2))^(1/x) = exp(LambertW(x^2) / x) = exp(x * exp(-LambertW(x^2))).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (n-k)^k * binomial(n-k-1,k)/(n-k)!.
E.g.f.: Sum_{k>=0} (-k*x + 1)^(k-1) * x^k / k!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^2)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 25 2023
STATUS
approved