Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #29 May 04 2023 06:40:14
%S 0,1,2,6,15,42,77,180,345,806,1457,3276,5985,13462,24257,54060,97665,
%T 217686,391937,871596,1570305,3492182,6286337,13972140,25155585,
%U 55911766,100642817,223660716,402612225,894735702,1610530817,3578997420,6442287105,14316361046
%N a(n) is the area of the smallest rectangle that the Harter-Heighway Dragon Curve will fit in after n doublings, starting with a segment of length 1.
%C When constructing this sequence, the rectangles that are considered are those whose sides are parallel to the corresponding links of the dragon curve.
%H Nicolay Avilov, <a href="/A362566/a362566.jpg">Illustration of initial terms</a>.
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,8,-8,-12,12,-16,16)
%F From _Andrey Zabolotskiy_, _Joerg Arndt_ and _Kevin Ryde_, May 03 2023: (Start)
%F G.f.: x * (1 + x + x^2 + 6*x^3 + 7*x^4 + 2*x^6) / ((1 - x) * (1 - 2*x) * (1 + 2*x) * (1 + x^2) * (1 - 2*x^2) * (1 + 2*x^2)).
%F a(n) =
%F (3*2^n - 5*2^(n/2) + 2) / 2 for n == 0 (mod 2),
%F (5*2^n - 9*2^((n-1)/2) + 2) / 3 for n == 1 (mod 4),
%F (5*2^n - 13*2^((n-1)/2) + 4) / 3 for n == 3 (mod 4). (End)
%e See link:
%e a(3) = 2*3 = 6;
%e a(4) = 3*5 = 15;
%e a(5) = 6*7 = 42.
%o (Python)
%o x1, x2, y1, y2, ex, ey, a = 0, 1, 0, 0, 1, 0, [0]
%o for n in range(40):
%o ex, ey = ex-ey, ey+ex
%o x1r, x2r, y1r, y2r = y1+ex, y2+ex, -x2+ey, -x1+ey
%o x1, x2, y1, y2 = min(x1, x1r), max(x2, x2r), min(y1, y1r), max(y2, y2r)
%o a.append((x2-x1)*(y2-y1))
%o print(a) # _Andrey Zabolotskiy_, May 03 2023
%Y Cf. A014577, A341029.
%K nonn,easy
%O 0,3
%A _Nicolay Avilov_, Apr 25 2023
%E Terms a(16) and beyond and a(0)=0 from _Andrey Zabolotskiy_, Apr 27 2023