login
A362430
E.g.f. satisfies A(x) = exp(x - x^3 * A(x)).
4
1, 1, 1, -5, -47, -239, 121, 19321, 261409, 1449505, -20428559, -730564559, -10403326559, -10910781023, 3713153976169, 108037345645321, 1301173754543041, -22441761904964159, -1628466860540690207, -41339196023230498463, -189173461196772118079
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(x^3 * exp(x))) = LambertW(x^3 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3*exp(x)))))
CROSSREFS
Cf. A362392.
Sequence in context: A139889 A134327 A122501 * A352303 A344121 A304371
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 20 2023
STATUS
approved