login
A362402
Positive numbers m such that a record number of numbers k have m as the sum of divisors of k that have a square factor (A162296).
2
1, 4, 48, 72, 216, 288, 864, 1440, 1728, 2880, 3456, 4320, 5184, 5760, 8640, 12096, 17280, 25920, 34560, 48384, 51840, 69120, 103680, 120960, 155520, 181440, 207360, 241920, 311040, 362880, 483840, 622080, 725760, 967680, 1088640, 1209600, 1451520, 2177280, 2903040
OFFSET
1,2
COMMENTS
The value 0 appears in the range of A162296 for all squarefree numbers (A005117) and therefore it is excluded from this sequence.
The corresponding record values are in A362403.
Except for 1, a subsequence of A362401.
LINKS
MATHEMATICA
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Array[s, max], 0 < # <= max &], sq = {1}, t, tmax = 0}, t = Sort[Tally[v]]; Do[If[t[[k]][[2]] > tmax, tmax = t[[k]][[2]]; AppendTo[sq, t[[k]][[1]]]], {k, 1, Length[t]}]; sq]; seq[10^5]
PROG
(PARI) s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1); }
lista(kmax) = {my(v = vector(kmax), vmax = 0, i); for(k=1, kmax, i = s(k); if(i > 0 && i <= kmax, v[i]++)); print1(1, ", "); for(k=1, kmax, if(v[k] > vmax, vmax = v[k]; print1(k, ", "))); }
CROSSREFS
Similar sequences: A097942, A100827, A145899, A238895.
Sequence in context: A370417 A242225 A157818 * A373435 A048608 A366492
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 18 2023
STATUS
approved