%I #12 Feb 16 2025 08:34:05
%S 1,1,-2,-17,10,976,3736,-106910,-1386020,15470380,562409596,
%T -722342444,-275109171776,-2700252315656,152965123673272,
%U 4156435296446896,-80740805437063664,-5565174444376872368,6196702378365183952,7539582040570866254032
%N E.g.f. satisfies A(x) = exp(x - 3*x^2/2 * A(x)).
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F E.g.f.: exp(x - LambertW(3*x^2/2 * exp(x))) = 2 * LambertW(3*x^2/2 * exp(x))/(3*x^2).
%F a(n) = n! * Sum_{k=0..floor(n/2)} (-3/2)^k * (k+1)^(n-k-1) / (k! * (n-2*k)!).
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(3*x^2/2*exp(x)))))
%Y Column k=3 of A362394.
%Y Cf. A362380.
%K sign,changed
%O 0,3
%A _Seiichi Manyama_, Apr 20 2023