login
A362025
a(n) is the least number that reaches 1 after n iterations of the infinitary totient function A064380.
1
2, 3, 4, 5, 9, 11, 16, 17, 28, 29, 46, 47, 99, 145, 167, 205, 314, 397, 437, 793, 851, 1137, 1693, 2453, 2771, 2989, 3701, 5099, 6801, 9299, 12031, 15811, 16816, 21520, 21521, 29547, 39685, 62077, 83191, 103473, 112117, 149535, 157159, 196049, 200267, 303022
OFFSET
1,1
FORMULA
A362024(a(n)) = n, and A362024(k) < n for all k < a(n).
MATHEMATICA
infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]];
iphi[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n - 1}];
numiter[n_] := Length@ NestWhileList[iphi, n, # > 1 &] - 1;
seq[kmax_] := Module[{v = {}, n = 1}, Do[If[numiter[k] == n, AppendTo[v, k]; n++], {k, 2, kmax}]; v]; seq[1000]
PROG
(PARI) isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
iphi(n) = sum(j = 1, n-1, isinfcoprime(j, n));
numiter(n) = if(n==2, 1, numiter(iphi(n)) + 1);
lista(kmax) = {my(n = 1); for(k = 2, kmax, if(numiter(k) == n, print1(k, ", "); n++)); }
CROSSREFS
Cf. A064380.
Indices of records of A362024.
Similar sequences: A003271, A007755, A333610.
Sequence in context: A100797 A139441 A333612 * A093305 A065817 A361227
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 05 2023
STATUS
approved