login
A362018
Numbers k such that the digits of k^2 do not form a subsequence of the digits of 2^k.
1
0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72
OFFSET
1,3
COMMENTS
Complement of A362001. It was conjectured that a(140)=327 is the last term (see A362001).
LINKS
PROG
(Python)
from itertools import count, islice
def A362018_gen(startvalue=0): # generator of terms >= startvalue
for k in count(max(startvalue, 0)):
c = iter(str(1<<k))
if any(map(lambda b:all(map(lambda a:a!=b, c)), str(k**2))):
yield k
A362018_list = list(islice(A362018_gen(), 100))
CROSSREFS
Cf. A362001.
Sequence in context: A005527 A285173 A009005 * A138884 A008521 A299489
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Apr 04 2023
STATUS
approved