login
A362005
a(n) is the least prime == 4 mod a(n-1), with a(1) = 3.
2
3, 7, 11, 37, 41, 127, 131, 397, 401, 3613, 3617, 18089, 488407, 9279737, 102077111, 2347773557, 377991542681, 35153213469337, 878830336733429, 4394151683667149, 276831556071030391, 6920788901775759779, 34603944508878798899, 173019722544393994499, 8131926959586517741457, 707477645484027043506763
OFFSET
1,1
LINKS
EXAMPLE
a(4) = 37 because a(3) = 11 and 37 is the least prime == 4 (mod 11).
MAPLE
A[1]:= 3:
for i from 2 to 30 do
for p from 4 by A[i-1] while not isprime(p) do od:
A[i]:= p
od:
seq(A[j], j=1..30);
CROSSREFS
Sequence in context: A119175 A038913 A141178 * A106966 A191027 A139599
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 03 2023
STATUS
approved