%I #32 Apr 18 2023 05:46:49
%S 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,26,27,28,29,
%T 31,32,33,34,35,36,37,38,39,41,42,43,44,46,47,48,49,51,53,57,61,62,63,
%U 64,66,67,68,71,72,73,74,75,76,77,79,81,82,83,84,86,88,89,91,92,93,94,97,98,99,111,112,113,114,116
%N Complement of A361337.
%C More than the usual number of terms are shown to distinguish the sequence from A034048.
%C Appears to be finite with 219 members, the largest being 3111.
%H Michael S. Branicky, <a href="/A361978/b361978.txt">Table of n, a(n) for n = 1..219</a>
%o (Python)
%o def ok(n):
%o if n < 10: return n != 0
%o s = str(n)
%o if "0" in s: return False
%o return all(ok(int(s[:i])*int(s[i:])) for i in range(1, len(s)))
%o print([k for k in range(117) if ok(k)]) # _Michael S. Branicky_, Apr 02 2023
%o (PARI) A361978=select( {is_A361978(n)=vecmin(digits(n))&& !for(p=1, logint(n, 10), is_A361978(vecprod(divrem(n, 10^p)))|| return)}, [1..10^5]) \\ Conjecturedly the full list: no terms between 3112 and 10^5. - _M. F. Hasler_, Apr 05 2023
%Y Cf. A034048, A011540, A361337, A277061.
%Y Subsequence of A052382.
%K nonn,base
%O 1,2
%A _Michael S. Branicky_, Apr 02 2023