login
A361842
Expansion of 1/(1 - 9*x*(1+x)^3)^(1/3).
4
1, 3, 27, 243, 2352, 23607, 242757, 2539431, 26904492, 287858421, 3104029755, 33684914907, 367483636746, 4026930734223, 44295829667055, 488855016668727, 5410588668898995, 60035381850523284, 667643481187840206, 7439651232903588528, 83050643822779921347
OFFSET
0,2
LINKS
FORMULA
n*a(n) = 3 * ( (3*n-2)*a(n-1) + 3*(3*n-4)*a(n-2) + 3*(3*n-6)*a(n-3) + (3*n-8)*a(n-4) ) for n > 3.
a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(3*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 2/3-n, 2/3-n], -2^8/3^5). - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-9)^n*Binomial[-1/3, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 2/3-n, 2/3-n}, -2^8/3^5]; Array[a, 21, 0] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1+x)^3)^(1/3))
CROSSREFS
Column k=3 of A361839.
Sequence in context: A268094 A013708 A102518 * A168495 A037763 A037651
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved