login
a(1) = 3; thereafter, a(n+1) is the smallest prime p such that p - prevprime(p) >= a(n) - prevprime(a(n)).
1

%I #17 Apr 23 2023 22:09:11

%S 3,5,7,11,17,23,29,37,53,59,67,79,89,97,127,307,331,541,907,1151,1361,

%T 8501,9587,12889,14143,15727,19661,25523,31469,156007,338119,360749,

%U 370373,492227,1349651,1357333,1562051,2010881,4652507,11114087,15204131,17051887

%N a(1) = 3; thereafter, a(n+1) is the smallest prime p such that p - prevprime(p) >= a(n) - prevprime(a(n)).

%C a(n) is the leading prime in the (n+1)-th prime sublist defined in A348178.

%F a(n) = nextprime(A134266(n)). - _Michel Marcus_, Mar 30 2023

%o (Python)

%o from sympy import nextprime; q = 2; g = 0

%o while q < 20000000:

%o p = nextprime(q); d = p - q

%o if d >= g: print(p, end = ', '); g = d

%o q = p

%o (PARI) a361823(upto) = {my(pp=2, gap=1); forprime (p=3, upto, my(g=p-pp);if(g>=gap, print1(p,", "); gap=g); pp=p)};

%o a361823(20000000) \\ _Hugo Pfoertner_, Apr 03 2023

%Y Cf. A001223, A070866, A134266, A348178.

%K nonn

%O 1,1

%A _Ya-Ping Lu_, Mar 25 2023