login
A361823
a(1) = 3; thereafter, a(n+1) is the smallest prime p such that p - prevprime(p) >= a(n) - prevprime(a(n)).
1
3, 5, 7, 11, 17, 23, 29, 37, 53, 59, 67, 79, 89, 97, 127, 307, 331, 541, 907, 1151, 1361, 8501, 9587, 12889, 14143, 15727, 19661, 25523, 31469, 156007, 338119, 360749, 370373, 492227, 1349651, 1357333, 1562051, 2010881, 4652507, 11114087, 15204131, 17051887
OFFSET
1,1
COMMENTS
a(n) is the leading prime in the (n+1)-th prime sublist defined in A348178.
FORMULA
a(n) = nextprime(A134266(n)). - Michel Marcus, Mar 30 2023
PROG
(Python)
from sympy import nextprime; q = 2; g = 0
while q < 20000000:
p = nextprime(q); d = p - q
if d >= g: print(p, end = ', '); g = d
q = p
(PARI) a361823(upto) = {my(pp=2, gap=1); forprime (p=3, upto, my(g=p-pp); if(g>=gap, print1(p, ", "); gap=g); pp=p)};
a361823(20000000) \\ Hugo Pfoertner, Apr 03 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ya-Ping Lu, Mar 25 2023
STATUS
approved