login
A361821
Perfect powers in A329150.
1
25, 27, 32, 225, 2025, 2197, 2500, 3025, 3375, 7225, 11025, 13225, 21952, 22500, 27000, 27225, 55225, 70225, 112225, 133225, 172225, 195112, 202500, 207025, 235225, 250000, 255025, 302500, 319225, 511225, 555025, 570025, 722500, 1102500, 1113025, 1177225, 1311025
OFFSET
1,1
COMMENTS
No term has a digit 4, 6 or 8.
Subsequences of squares are listed in Crossrefs.
EXAMPLE
32 is a term since A329147(21) = 32 = 2^5.
2197 is a term since A329147(194) = 2197 = 13^3.
235225 is a term since A329147(123113) = 235225 = 485^2.
MATHEMATICA
p[n_] := If[n > 0, Prime[n], 0]; ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; seq[ndigmax_] := Module[{t = Table[FromDigits[Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, 0 < # < 10^ndigmax && ppQ[#] &]]; seq[6] (* Amiram Eldar, Mar 26 2023 *)
PROG
(PARI) f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispower(m), listput(list, m)); ); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023
CROSSREFS
Intersection of A001597 and A329150.
Cf. A329147.
Subsequences of squares with specified digits: A058426 (0,2,5), A053919 (2,3,5), A030485 (2,5,7), A191486 (2,3,5,7).
Sequence in context: A183982 A287763 A239523 * A129820 A096522 A195351
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Mar 25 2023
STATUS
approved