login
A361811
Smallest members of infinitary sociable quadruples.
0
1026, 10098, 10260, 41800, 45696, 100980, 241824, 685440, 4938136, 13959680, 14958944, 25581600, 28158165, 32440716, 36072320, 55204500, 74062944, 81128632, 149589440, 178327008, 192793770, 209524210, 283604220, 319848642, 498215416, 581112000, 740629440, 1236402232
OFFSET
1,1
COMMENTS
The first 8 terms were found by Cohen (1990).
LINKS
Graeme L. Cohen, On an integer's infinitary divisors, Mathematics of Computation, Vol. 54, No. 189 (1990), pp. 395-411.
EXAMPLE
1026 is a term since the iterations of the sum of aliquot infinitary divisors function (A126168) that start with 1026 are cyclic with period 4: 1026, 1374, 1386, 1494, 1026, ..., and 1026 is the smallest member of the quadruple.
The first five quadruples are {1026, 1374, 1386, 1494}, {10098, 15822, 19458, 15102}, {10260, 13740, 13860, 14940}, {41800, 51800, 66760, 83540}, {45696, 101184, 94656, 88944}.
MATHEMATICA
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]]>0, 1 + p^(2^(m-j)), 1], {j, 1, m}]]; infs[n_] := Times @@ f @@@ FactorInteger[n] - n; infs[1] = 0; seq[n_] := NestList[infs, n, 4][[2;; 5]] ; q[n_] := Module[{s = seq[n]}, n == Min[s] && Count[s, n] == 1]; Select[Range[10^6], q]
PROG
(PARI) infs(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
is(n) = {my(m = n); for(k = 1, 4, m = infs(m); if(k < 4 && m <= n, return(0))); m == n; }
CROSSREFS
Cf. A007357 (period 1), A126169 and A126170 (period 2).
Subsequence of A004607 (all cycles of length > 2).
Similar sequences: A090615 (all divisors), A319902 (unitary), A319915 (bi-unitary).
Sequence in context: A371982 A031530 A004607 * A221008 A282254 A229332
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 25 2023
STATUS
approved