login
A361787
Bi-unitary arithmetic numbers k whose mean bi-unitary divisor is a bi-unitary divisor of k.
1
1, 6, 60, 270, 420, 630, 672, 2970, 5460, 8190, 10080, 22848, 30240, 99792, 136500, 172900, 204750, 208656, 245700, 249480, 312480, 332640, 342720, 385560, 491400, 695520, 708288, 791700, 819000, 861840, 1028160, 1037400, 1187550, 1228500, 1421280, 1528800, 1571328
OFFSET
1,2
COMMENTS
Also, bi-unitary harmonic numbers k whose harmonic mean of the bi-unitary divisors of k is a bi-unitary divisor of k.
LINKS
EXAMPLE
6 is a term since the arithmetic mean of its bi-unitary divisors, {1, 2, 3, 6}, is 3, and 3 is also a bi-unitary divisor of 6.
60 is a term since the arithmetic mean of its bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, is 15, and 15 is also a bi-unitary divisor of 60.
MATHEMATICA
biudivQ[f_, d_] := AllTrue[f, OddQ[Last[#]] || IntegerExponent[d, First[#]] != Last[#]/2 &]; biuDivs[n_] := Module[{d = Divisors[n], f = FactorInteger[n]}, Select[d, biudivQ[f, #] &]]; Select[Range[10^5], IntegerQ[(r = Mean[(i = biuDivs[#])])] && MemberQ[i, r] &]
PROG
(PARI) isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1; }
is(n) = {my(f = factor(n), r, p, e); r = prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/((e + 1)*(p-1)), ((p^(e+1)-1)/(p-1)-p^(e/2))/e)); denominator(r) == 1 && n%r==0 && isbdiv(f, r); }
CROSSREFS
Subsequence of A286325 and A361786.
Similar sequence: A007340, A353039, A361387.
Sequence in context: A121287 A069072 A361761 * A361387 A256442 A296317
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 24 2023
STATUS
approved