login
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).
6

%I #31 Jul 10 2024 17:25:33

%S 0,1,25,649,16921,448751,12160177,336745053,9513822745,273585035755,

%T 7988828082775,236367018090017,7072779699975601,213701611408357567,

%U 6511338458568750853,199850727914988936149,6173376842290368719385,191776434791965521115235,5987554996434696230487955

%N a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).

%C Conjecture 1: the supercongruence a(p) == a(1) (mod p^5) holds for all primes p >= 7 (checked up to p = 199).

%C Conjecture 2: for r >= 2, the supercongruence a(p^r) == a(p^(r-1)) (mod p^(3*r+3) holds for all primes p >= 5.

%C Compare with the Apéry numbers A005259(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(n+k,k)^2, which satisfy the weaker supercongruences A005259(p^r) == A005259(p^(r-1)) (mod p^(3*r)) for all primes p >= 5.

%H Paolo Xausa, <a href="/A361712/b361712.txt">Table of n, a(n) for n = 0..650</a>

%H Peter Bala, <a href="/A361712/a361712.pdf">Recurrence equation for A361712</a>

%F a(n) = (1/12)*(7*A005259(n) + A005259(n-1)) - (1/2)*binomial(2*n,n)^2.

%F a(n) ~ 2^(1/4)*(1 + sqrt(2))^(4*n+1)/(4*Pi^(3/2)*n^(3/2)).

%F a(n) = hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n - 1, n) = A361878(n) - A361877(n). - _Peter Luschny_, Mar 27 2023

%e a(7) - a(1) = (2^2)*(7^5)*5009 == 0 (mod 7^5)

%e a(11) - a(1) = (2^5)*(11^5)*45864163 == 0 (mod 11^5)

%e a(7^2) - a(7) = (2*3)*(7^9)*377052719*240136524699189343838527* 17965610580703155723668147409587 == 0 (mod 7^9)

%p seq(add(binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k), k = 0..n-1), n = 0..25);

%p # Alternative:

%p A361712 := n -> hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n-1, n): seq(simplify(A361712(n)), n = 0..18); # _Peter Luschny_, Mar 27 2023

%t A361712[n_] := HypergeometricPFQ[{-n, -n, n, n+1}, {1, 1, 1}, 1] - Binomial[2*n, n]*Binomial[2*n-1, n]; Array[A361712, 20, 0] (* _Paolo Xausa_, Jul 10 2024 *)

%Y Cf. A005259, A212334, A361713, A361714, A361715, A361717.

%Y Cf. A361877, A361878.

%K nonn,easy

%O 0,3

%A _Peter Bala_, Mar 21 2023