OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(n+2*k,3*k)/k! = Sum_{k=0..n} (n+2*k)!/(3*k)! * binomial(n,k).
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = 2*(2*n - 1)*a(n-1) - (n-1)*(6*n - 11)*a(n-2) + (n-2)*(n-1)*(4*n - 9)*a(n-3) - (n-3)^2*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/8) * exp(-1/27 - 3^(-5/4)*n^(1/4)/8 + sqrt(n/3)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n + 1/8) / 2 * (1 + (34237/69120)*3^(1/4)/n^(1/4)). (End)
MATHEMATICA
Table[n! * Sum[Binomial[n+2*k, 3*k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^3)/(1-x)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 17 2023
STATUS
approved