%I #44 Apr 16 2023 10:39:08
%S 3,7,11,19,23,31,43,79,127,167,191,199,347,3539,5807,10691,11279,
%T 12391,14479,83339,117239,127031,141079,269987,986191,4031399
%N Wagstaff numbers that are of the form 4*k + 3.
%C 13347311 and 13372531 are also in the sequence, but may not be the next terms.
%H Jorge Coveiro, <a href="https://www.mersenneforum.org/showthread.php?t=28546">Possible 'Formula' for Wagstaff numbers</a>, mersenneforum.org.
%F Intersection of A000978 and A002145.
%o (Python)
%o from itertools import count, islice
%o from sympy import prime, isprime
%o def A361562_gen(): # generator of terms
%o return filter(lambda p: p&2 and isprime(((1<<p)+1)//3), (prime(n) for n in count(2)))
%o A361562_list = list(islice(A361562_gen(),10)) # _Chai Wah Wu_, Mar 21 2023
%Y Cf. A000978 (Wagstaff numbers), A002145 (primes of form 4*k+3), A112633, A361563.
%K nonn,more
%O 1,1
%A _Jorge Coveiro_, Mar 15 2023