login
A361318
Harmonic means of the infinitary divisors of the infinitary harmonic numbers.
2
1, 2, 3, 4, 4, 6, 7, 7, 11, 13, 13, 10, 7, 15, 16, 15, 9, 20, 18, 14, 25, 24, 19, 25, 15, 27, 28, 30, 18, 36, 13, 21, 17, 29, 40, 33, 24, 28, 38, 31, 29, 45, 34, 27, 28, 44, 27, 60, 36, 52, 46, 26, 51, 42, 55, 33, 66, 40, 24, 37, 49, 29, 47, 57, 34, 68, 49, 44
OFFSET
1,2
COMMENTS
Each term appears a finite number of times in the sequence (Hagis and Cohen, 1990).
LINKS
Peter Hagis, Jr. and Graeme L. Cohen, Infinitary harmonic numbers, Bull. Australian Math. Soc., Vol. 41, No. 1 (1990), pp. 151-158.
FORMULA
a(n) = A361316(A063947(n)).
MATHEMATICA
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; s[1] = 1; s[n_] := n * Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^4], IntegerQ]
PROG
(PARI) ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
lista(kmax) = {my(ih); for(k = 1, kmax, ih = ihmean(k); if(denominator(ih) == 1, print1(ih, ", "))); }
CROSSREFS
Similar sequences: A001600, A006087.
Sequence in context: A178993 A193768 A361784 * A205791 A039696 A076332
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 09 2023
STATUS
approved