OFFSET
1,3
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..200
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^(3*n-2) may be defined by the following.
(1) A(x) = Series_Reversion(x - x^4*A'(x)^2).
(2) A(x) = x + A(x)^4 * A'(A(x))^2.
(3) A(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(4*n-1) * A'(x)^(2*n) / n! ).
(4) A'(x) = Sum_{n>=0} d^n/dx^n x^(4*n) * A'(x)^(2*n) / n! is the g.f. of A361542.
(5) a(n) = A361542(n-1)/(3*n-2) for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^4 + 12*x^7 + 294*x^10 + 10556*x^13 + 488105*x^16 + 27237748*x^19 + 1766404068*x^22 + 129955274460*x^25 + ... + a(n)*x^(3*n-2) + ...
By definition, A(x - x^4*A'(x)^2) = x, where
A'(x) = 1 + 4*x^3 + 84*x^6 + 2940*x^9 + 137228*x^12 + 7809680*x^15 + 517517212*x^18 + 38860889496*x^21 + ... + A361542(n)*x^(3*n) + ...
Also,
A'(x) = 1 + (d/dx x^4*A'(x)^2) + (d^2/dx^2 x^8*A'(x)^4)/2! + (d^3/dx^3 x^12*A'(x)^6)/3! + (d^4/dx^4 x^16*A'(x)^8)/4! + (d^5/dx^5 x^20*A'(x)^10/5! + ... + (d^n/dx^n x^(4*n)*A'(x)^(2*n))/n! + ...
Further,
A(x) = x * exp( x^3*A'(x)^2 + (d/dx x^7*A'(x)^4)/2! + (d^2/dx^2 x^11*A'(x)^6)/3! + (d^3/dx^3 x^15*A'(x)^8)/4! + (d^4/dx^4 x^19*A'(x)^10)/5! + ... + (d^(n-1)/dx^(n-1) x^(4*n-1)*A'(x)^(2*n))/n! + ... ).
PROG
(PARI) {a(n) = my(A=x+x^3); for(i=1, n, A = serreverse(x - x^4*A'^2 +x*O(x^(3*n)))); polcoeff(A, 3*n-2)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2023
STATUS
approved