login
A361248
a(n) is the smallest integer k > 3 that satisfies k mod j <= 3 for all integers j in 1..n.
3
4, 4, 4, 4, 5, 6, 7, 8, 56, 72, 91, 651, 651, 1080, 1080, 1443, 20163, 20163, 246962, 246962, 246962, 609843, 2162162, 2162162, 29055601, 29055601, 107881202, 107881202, 205405203, 205405203, 3625549202, 5675443203, 8374212002, 8374212002, 8374212002, 8374212002, 131668891200, 131668891200
OFFSET
1,1
LINKS
FORMULA
For n > 2, n <= a(n) < A003418(n). - Charles R Greathouse IV, Apr 27 2023
EXAMPLE
a(11)=91 since 91 mod 11 = 3, 91 mod 10 = 1, 91 mod 9 = 1, 91 mod 8 = 3, 91 mod 7 = 0, 91 mod 6 = 1, 91 mod 5 = 1, 91 mod 4 = 3, 91 mod 3 = 1, 91 mod 2 = 1, 91 mod 1 = 0 and 91 is the smallest integer greater than 3 where all of these remainders are 3 or less.
PROG
(Python)
final=100
k=4
for n in range(1, final+1):
j = n+1
while (j > 3):
j -= 1
if k%j>3:
k += j-(k%j)
j = n+1
print(k)
(PARI) isok(k, n) = for (j=5, n, if ((k % j) > 3, return(0))); return(1);
a(n) = my(k=4); while(!isok(k, n), k++); k; \\ Michel Marcus, Mar 17 2023
CROSSREFS
Cf. A003418 (all remainders 0).
Sequence in context: A138195 A140744 A179414 * A139324 A111655 A175961
KEYWORD
nonn
AUTHOR
Andrew Cogliano, Mar 05 2023
STATUS
approved