login
A361229
G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.
1
1, 0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 84, 152, 284, 532, 987, 1826, 3401, 6384, 12024, 22656, 42728, 80780, 153151, 290970, 553601, 1054688, 2012373, 3845646, 7359345, 14100692, 27048061, 51941850, 99855389, 192163904, 370159216, 713672568, 1377168108, 2659729380
OFFSET
0,6
FORMULA
G.f.: A(x) = 2*(1-x) / (1-x+sqrt((1-x)^2-4*x^4)).
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1).
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +(3*n+2)*a(n-2) +(-n+1)*a(n-3) +4*(-n+2)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023
MAPLE
A361229 := proc(n)
add(binomial(n-2*k-1, n-4*k) * binomial(2*k, k) / (k+1), k=0..floor(n/4)) ;
end proc:
seq(A361229(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n-2*k-1, n-4*k)*binomial(2*k, k)/(k+1));
CROSSREFS
Partial sums give A023426.
Sequence in context: A329111 A014251 A290992 * A265742 A098010 A088533
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 15 2023
STATUS
approved