OFFSET
1,4
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_3(e) / p^(e*s)).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_3(e) - sigma_3(e-1)) / p^e) = 136.775196585091127831467103699999450735835551529525277016916082455332230986...
MATHEMATICA
g[p_, e_] := DivisorSigma[3, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(Python)
from math import prod
from sympy import factorint, divisor_sigma
def A361064(n): return prod(divisor_sigma(e, 3) for e in factorint(n).values()) # Chai Wah Wu, Mar 01 2023
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Mar 01 2023
STATUS
approved