login
Expansion of g.f. A(x) satisfying 3/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
3

%I #13 Jan 05 2024 17:17:49

%S 1,3,51,1008,22746,558177,14469999,389827008,10805735061,306185433921,

%T 8828873667975,258229614694974,7642514652514140,228450735379271754,

%U 6887262023421308658,209169231039167908596,6393531094406983438776,196536271435928605186752,6071932630099467279020415

%N Expansion of g.f. A(x) satisfying 3/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%H Paul D. Hanna, <a href="/A361051/b361051.txt">Table of n, a(n) for n = 1..300</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuintupleProductIdentity.html">Quintuple Product Identity</a>.

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following.

%F (1) 3/x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).

%F (2) 3/x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.

%F (3) a(n) = Sum_{k=0..n-1} A361050(n,k) * 3^k, for n >= 1.

%F a(n) ~ c * d^n / n^(3/2), where d = 33.61307737482651437383925998526816971444845895805... and c = 0.004710392090243985254460721389434519943286349... - _Vaclav Kotesovec_, Mar 19 2023

%e G.f.: A(x) = x + 3*x^2 + 51*x^3 + 1008*x^4 + 22746*x^5 + 558177*x^6 + 14469999*x^7 + 389827008*x^8 + 10805735061*x^9 + ...

%e where A = A(x) satisfies the doubly infinite sum

%e 3/x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...

%e also, by the Watson quintuple product identity,

%e 3/x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...

%o (PARI) /* Using the doubly infinite series */

%o {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(3/x - sum(m=-#A, #A, (Ser(A)^(3*m) - 1/Ser(A)^(3*m+1)) * x^(m*(3*m+1)/2) ), #A-4) ); A[n+1]}

%o for(n=1, 30, print1(a(n), ", "))

%o (PARI) /* Using the quintuple product */

%o {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);

%o A[#A] = polcoeff(3/x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-4) ); A[n+1]}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A361050, A359921, A359924, A361052, A361538.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Mar 18 2023