OFFSET
0,1
COMMENTS
Row 1 of the square array A361027.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that 6*A000984(n) is divisible by (n + 1)*(n + 2) and the result 6*(2n)!/(n!*(n+2)!) is the super ballot number A007054(n). Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that 120*A006480(n) is divisible by ((n + 1)*(n + 2))^2, leading to the present sequence. Do these numbers have a combinatorial interpretation?
FORMULA
a(n) = 120/((n+1)*(n+2))^2 * (3*n)!/n!^3.
a(n) = (1/3)*(1*2*4*5) * A006480(n+2)/((3*n + 1)*(3*n + 2)*(3*n + 4)*(3*n +
5)), where A006480(n) = (3*n)!/n!^3.
a(n) = (10*binomial(3*n,n) - 7*binomial(3*n,n+1) + binomial(3*n,n+2)) * (3*binomial(2*n,n) - 4*binomial(2*n,n+1) + binomial(2*n,n+2)), shows that a(n) is an integer for all n.
a(n) = (1/3)*27^(n+2)*binomial(4/3, n+2)*binomial(5/3, n+2).
a(n) ~ sqrt(3)*60*27^n/(Pi*n^5).
P-recursive: (n + 2)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 30.
The o.g.f. A(x) satisfies the differential equation x^2*(1 - 27*x)*A''(x) + x*(5 - 54*x)*A'(x) + (4 - 6*x)*A(x) - 120 = 0, with A(0) = 30 and A'(0) = 20.
MAPLE
a := proc(n) option remember; if n = 0 then 30 else 3*(3*n-1)*(3*n-2)/(n+2)^2*a(n-1) end if; end proc:
seq(a(n), n = 0..20);
MATHEMATICA
Table[120 (3n)!/(n!(n+2)!^2), {n, 0, 20}] (* Harvey P. Dale, Jul 02 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 01 2023
STATUS
approved