login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Multiplicative with a(p^e) = sigma(e), where sigma = A000203.
6

%I #27 Jan 08 2025 02:08:39

%S 1,1,1,3,1,1,1,4,3,1,1,3,1,1,1,7,1,3,1,3,1,1,1,4,3,1,4,3,1,1,1,6,1,1,

%T 1,9,1,1,1,4,1,1,1,3,3,1,1,7,3,3,1,3,1,4,1,4,1,1,1,3,1,1,3,12,1,1,1,3,

%U 1,1,1,12,1,1,3,3,1,1,1,7,7,1,1,3,1,1

%N Multiplicative with a(p^e) = sigma(e), where sigma = A000203.

%H Amiram Eldar, <a href="/A361012/b361012.txt">Table of n, a(n) for n = 1..10000</a>

%F Dirichlet g.f.: Product_{p prime} (1 + Sum_{e>=1} sigma(e) / p^(e*s)).

%F Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma(e) - sigma(e-1)) / p^e) = 2.96008030202494141048182047811089469392843909592516341... = A361013

%t g[p_, e_] := DivisorSigma[1, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]

%o (Python)

%o from math import prod

%o from sympy import divisor_sigma, factorint

%o def A361012(n): return prod(divisor_sigma(e) for e in factorint(n).values()) # _Chai Wah Wu_, Feb 28 2023

%o (PARI) a(n) = vecprod(apply(sigma, factor(n)[, 2])); \\ _Amiram Eldar_, Jan 07 2025

%Y Cf. A000203, A049419, A145353, A072911, A327837, A327838.

%K nonn,mult

%O 1,4

%A _Vaclav Kotesovec_, Feb 28 2023