OFFSET
0,2
LINKS
Winston de Greef, Table of n, a(n) for n = 0..342
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..n} 2^k * (k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp ( -LambertW(-2*x/(1-x)) ).
E.g.f.: -(1-x)/(2*x) * LambertW(-2*x/(1-x)).
a(n) ~ (1 + 2*exp(1))^(n + 1/2) * n^(n-1) / (sqrt(2) * exp(n - 1/2)). - Vaclav Kotesovec, Nov 10 2023
PROG
(PARI) a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n-1, n-k)/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-(1-x)/(2*x)*lambertw(-2*x/(1-x))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 04 2023
STATUS
approved