OFFSET
1,2
COMMENTS
This is a subsequence of A360799. Another description of the terms: in the base-2 representation, the number of ones is odd and all zeros are grouped in blocks of even length.
That is why the terms less than 2^(2j+1) describe start profiles for tiling a (2j+1) X m wall with 1 X 2 dominos, see examples and A360799.
EXAMPLE
A 5 X m wall is tiled bottom-up with dominos, start profiles:
_ _ _ _ _ _ _ _ _ _ _ _ _
___ ___| | ___| |___ ___| | | | | |___| | | | | | | | |
|___|___|_| |___|_|___| |___|_|_|_| |_|___|_|_| |_|_|_|_|_|
0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1
1 = a(1) 4 = a(2) 7 = a(3) 19 = a(5) 31 = a(7)
also the mirror images of 1 (16), 19 (25) and 7 (28).
PROG
(Maxima)
block(kmax: 100, a:[],
oddsum(y):= block(su1:0, su2:0, pold:0, ok: true,
while y>0 and ok do(p:mod(y, 2), y:(y-p)/2,
if p=1 then(if pold=0 and su2=1 then ok:false, su1:1-su1, su2:0)
elseif p=0 then su2:1-su2, pold:p), return(is(ok and su1=1))),
for k from 1 thru kmax do if oddsum(k) then a:append(a, [k]), a);
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerhard Kirchner, Feb 24 2023
STATUS
approved