login
A360766
a(0) = 0; a(n) = ( (n + sqrt(n))^n - (n - sqrt(n))^n )/(2 * sqrt(n)).
1
0, 1, 4, 30, 320, 4400, 73872, 1462552, 33325056, 858283776, 24641000000, 779935205984, 26972930949120, 1011642325897216, 40890444454377728, 1771640957790000000, 81896889467638120448, 4022826671022707900416, 209224123984489179202560
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor((n-1)/2)} n^(n-1-k) * binomial(n,2*k+1).
a(n) = [x^n] x/(1 - 2*n*x + (n-1)*n*x^2).
a(n) = n! * [x^n] exp(n * x) * sinh(sqrt(n) * x) / sqrt(n) for n > 0.
PROG
(PARI) a(n) = polcoeff(lift(Mod('x, ('x-n)^2-n)^n), 1); \\ Kevin Ryde, Mar 16 2023
CROSSREFS
Main diagonal of A361290.
Cf. A084062.
Sequence in context: A139086 A243244 A293022 * A298244 A293191 A367963
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Mar 11 2023
STATUS
approved