login
A360730
Expansion of Sum_{k>=0} (k * x * (1 + k*x^2))^k.
5
1, 1, 4, 28, 272, 3368, 50768, 902397, 18481408, 428556075, 11099001600, 317544062217, 9946366838784, 338537433281448, 12441407233436672, 491002325860132371, 20710640842719301632, 929821866165431838038, 44270378887441746923520
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^(n-k) * binomial(n-2*k,k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x^2))^k))
(PARI) a(n) = sum(k=0, n\3, (n-2*k)^(n-k)*binomial(n-2*k, k));
CROSSREFS
Sequence in context: A112915 A129683 A367474 * A352082 A081917 A302583
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 18 2023
STATUS
approved