%I #6 Mar 08 2023 23:17:14
%S 0,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,2,1,3,1,1,
%T 1,2,1,1,1,2,1,2,1,2,2,1,1,3,1,2,1,2,1,2,1,2,1,1,1,2,1,1,2,3,1,2,1,2,
%U 1,2,1,3,1,1,2,2,1,2,1,3,2,1,1,2,1,1,1
%N Half the number of prime factors of n (counted with multiplicity, A001222), rounded up.
%e The prime indices of 378 are {1,2,2,2,4}, so a(378) = ceiling(5/2) = 3.
%t Table[Ceiling[PrimeOmega[n]/2],{n,100}]
%Y Positions of 0's and 1's are 1 and A037143.
%Y Positions of first appearances are A081294.
%Y Rounding down instead of up gives A360616.
%Y A112798 lists prime indices, length A001222, sum A056239, median* A360005.
%Y A360673 counts multisets by right sum (exclusive), inclusive A360671.
%Y First for prime indices, second for partitions, third for prime factors:
%Y - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y Cf. A000040, A000302, A001248, A026424, A168645, A359912, A360006, A360457.
%K nonn
%O 1,8
%A _Gus Wiseman_, Mar 08 2023