%I #13 Feb 13 2023 16:16:38
%S 1,1,1,1,2,1,1,2,3,1,1,2,4,5,1,1,2,4,7,8,1,1,2,4,10,13,13,1,1,2,4,10,
%T 19,24,21,1,1,2,4,10,20,41,44,34,1,1,2,4,10,20,43,84,81,55,1,1,2,4,10,
%U 20,56,89,180,149,89,1,1,2,4,10,20,57,115,192,372,274,144,1
%N Square of A(n,m) read by antidiagonals. A(n,m) = number of set partitions of [6n] into 6-element subsets {i, i+k, i+2k, i+3k, i+4k, i+5k} with 1 <= k <= m.
%F A(n,m) = A104432(n) = A104443(n,6) for m >= floor((6n - 1) / 5).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 2, 2, 2, 2, 2, 2, 2, 2, ...
%e 1, 3, 4, 4, 4, 4, 4, 4, 4, ...
%e 1, 5, 7, 10, 10, 10, 10, 10, 10, ...
%e 1, 8, 13, 19, 20, 20, 20, 20, 20, ...
%e 1, 13, 24, 41, 43, 56, 57, 57, 57, ...
%e 1, 21, 44, 84, 89, 115, 118, 119, 119, ...
%e 1, 34, 81, 180, 192, 267, 274, 328, 329, ...
%e 1, 55, 149, 372, 404, 592, 609, 718, 759, ...
%e 1, 89, 274, 785, 860, 1372, 1416, 1778, 1861, ...
%e 1, 144, 504, 1637, 1816, 3028, 3136, 3972, 4179, ...
%e 1, 233, 927, 3442, 3857, 7038, 7323, 9979, 10623, ...
%e ...
%Y Columns 1..3 are A000012, A000045(n+1), A000073(n+2).
%Y Cf. A104432, A104443, A360333..A360335, A360491, A360493.
%K nonn,tabl
%O 1,5
%A _Peter Dolland_, Feb 09 2023