login
A360381
Generalized Somos-5 sequence a(n) = (a(n-1)*a(n-4) + a(n-2)*a(n-3))/a(n-5) = -a(-n), a(1) = 1, a(2) = -1, a(3) = a(4) = 1, a(5) = -7.
2
0, 1, -1, 1, 1, -7, 8, -1, -57, 391, -455, -2729, 22352, -175111, 47767, 8888873, -69739671, 565353361, 3385862936, -195345149609, 1747973613295, -4686154246801, -632038062613231, 34045765616463119, -319807929289790304, -11453004955077020783
OFFSET
0,6
COMMENTS
This has the same recurrence as Somos-5 (A006721) with different initial values.
The elliptic curve y^2 + xy = x^3 + x^2 - 2x (LMFDB label 102.a1) has infinite order point P = (2, 2). The x and y coordinates of n*P have denominators a(n)^2 and |a(n)^3| respectively.
If b(2*n) = 6^(1/4)*a(2*n), b(2*n+1) = a(2*n+1), then b(n) is a generalized Somos-4 sequence with b(n+2)*b(n-2) = 6^(1/2)*b(n+1)*b(n-1) - b(n)*b(n) for all n in Z.
This is the sequence T_n in the Hone 2022 paper.
LINKS
A. N. W. Hone, Heron triangles with two rational medians and Somos-5 sequences, European Journal of Mathematics, 8 (2022), 1424-1486; arXiv:2107.03197 [math.NT], 2021-2022.
FORMULA
a(2*n) = -A241595(n+1), a(n) = -a(-n) for all n in Z.
EXAMPLE
5*P = (50/49, 20/343) and a(5) = -7, 6*P = (121/64, -1881/512) and a(6) = 8.
MATHEMATICA
a[0] = 0; a[1] = a[3] = a[4] = 1; a[2] = -1; a[5] = -7;
a[n_?Negative] := -a[-n];
a[n_] := a[n] = (a[n-1] a[n-4] + a[n-2] a[n-3]) / a[n-5]; (* Andrey Zabolotskiy, Feb 05 2023 *)
a[ n_] := Module[{A = Table[1, Max[5, Abs[n]]]}, A[[2]] = -1; A[[5]] = -7; Do[ A[[k]] = (A[[k-1]]*A[[k-4]] + A[[k-2]]*A[[k-3]])/A[[k-5]], {k, 6, Length[A]}]; If[n==0, 0, Sign[n]*A[[Abs[n]]] ]];
PROG
(PARI) {a(n) = my(A = vector(max(5, abs(n)), k, 1)); A[2] = -1; A[5] = -7; for(k=6, #A, A[k] = (A[k-1]*A[k-4] + A[k-2]*A[k-3])/A[k-5]); if(n==0, 0, sign(n)*A[abs(n)])};
CROSSREFS
Sequence in context: A093720 A154216 A258947 * A216207 A171274 A126625
KEYWORD
sign
AUTHOR
Michael Somos, Feb 04 2023
STATUS
approved