login
A360349
G.f. A(x) = exp( Sum_{k>=1} A360348(k) * x^k/k ), where A360348(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) for k >= 1.
3
1, 1, 5, 38, 391, 5077, 79535, 1458264, 30621237, 724555611, 19076629520, 553236991215, 17525729241605, 602215048797900, 22312035980459259, 886733059906749795, 37631474149766344476, 1698581174869953607957, 81257725943229600518977, 4106922637708383448243974
OFFSET
0,3
COMMENTS
Related series: M(x) = exp( Sum_{k>=1} A002426(k) * x^k/k ), where M(x) = 1 + x*M(x) + x^2*M(x)^2 is the Motzkin function (A001006) and A002426(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + y + y^2)^m * x^m ) for k >= 1.
LINKS
FORMULA
a(n) ~ BesselI(0, 2) * n^n. - Vaclav Kotesovec, Feb 12 2023
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 391*x^4 + 5077*x^5 + 79535*x^6 + 1458264*x^7 + 30621237*x^8 + 724555611*x^9 + ...
such that
log(A(x)) = x + 9*x^2/2 + 100*x^3/3 + 1381*x^4/4 + 22771*x^5/5 + 435138*x^6/6 + 9442049*x^7/7 + 229265109*x^8/8 + ... + A360348(n)*x^n/n + ...
where A360348(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) = (y^2 + y + 1)*x + (y^4 + 6*y^3 + 9*y^2 + 6*y + 1)*x^2/2 + (y^6 + 15*y^5 + 63*y^4 + 100*y^3 + 63*y^2 + 15*y + 1)*x^3/3 + (y^8 + 28*y^7 + 242*y^6 + 872*y^5 + 1381*y^4 + 872*y^3 + 242*y^2 + 28*y + 1)*x^4/4 + (y^10 + 45*y^9 + 665*y^8 + 4430*y^7 + 14545*y^6 + 22771*y^5 + 14545*y^4 + 4430*y^3 + 665*y^2 + 45*y + 1)*x^5/5 + ...
PROG
(PARI) {A360348(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (1 + m*y + y^2)^m *x^m ) +x*O(x^n) ), n, x), n, y)}
{a(n) = polcoeff( exp( sum(m=1, n, A360348(m)*x^m/m ) +x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2023
STATUS
approved