login
A360175
a(n) = Sum_{k=0..n} (-1)^(n-k)*(n!/k!) * [x^n] (1 - exp(-LambertW(x*exp(-x))))^k.
0
1, 1, 6, 53, 647, 10092, 191915, 4309769, 111682044, 3281731611, 107860953795, 3921762633846, 156322429050397, 6779458454252941, 317841794915501862, 16020304439710056785, 863955306007083830051, 49641711131738762890764, 3027776406780183894833791, 195382900651186641677702197
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} |A360176(n, k)|.
MAPLE
egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!:
ser := k -> series(egf(k), x, 22):
T := (n, k) -> (-1)^(n-k)*n!*coeff(ser(k), x, n):
seq(add(T(n, k), k = 0..n), n = 0..19);
CROSSREFS
Cf. A360176.
Sequence in context: A109092 A068416 A360231 * A221413 A145003 A248369
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 29 2023
STATUS
approved