login
A360120
a(n) = 1 if there are no solutions to k*n/(k+n) = x and k*n/(k-n) = y for integers x and y and natural number k, otherwise 0.
4
1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1
OFFSET
1
FORMULA
a(n) = [A243017(n) = 0] = [A243045(n) = 0] = [A243046(n) = 0], where [ ] is the Iverson bracket.
PROG
(PARI) A360120(n) = { for(k=1, n*(n+1), if(k!=n && !((k*n)%(k+n)) && !((k*n)%(k-n)), return(0))); (1); };
CROSSREFS
Characteristic function of A243047.
Sequence in context: A362129 A267520 A114915 * A361022 A341754 A074711
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 18 2023
STATUS
approved