OFFSET
1,6
COMMENTS
Because the algorithm for computing this sequence (see the PARI program) starts with s set to the number of divisors, and s is decremented at most once on each iteration in the loop over the first differences of the divisors, and because there is one less difference than there are divisors, it implies that a(n) >= 1 for all n.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
PROG
(PARI) A360119(n) = { my(d=divisors(n), erot=vecsort(vector(#d-1, k, d[k+1] - d[k])), s=#d); for(i=1, #erot, if(n%erot[i], s--, if(1==i || erot[i]!=erot[i-1], s--))); (s); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 20 2023
STATUS
approved