OFFSET
0,2
COMMENTS
Recurrence 1 is derived in A359884, "3d-tilings of a 2 X 2 X n box" as a special case of a more general tiling problem: III, example 8.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..850
Index entries for linear recurrences with constant coefficients, signature (13,20,-64,112,224,-128).
FORMULA
G.f.: (1 - 8*x + 4*x^2 - 16*x^3) / (1 - 13*x - 20*x^2 + 64*x^3 - 112*x^4 - 224*x^5 + 128*x^6).
Recurrence 1:
a(n) = 5*a(n-1) + 2*b(n-1) + c(n-1) + d(n-1) + e(n-1) + 8*a(n-2) + 4*b(n-2) + c(n-2) + 2*d(n-2),
b(n) = 8*a(n-1) + 4*b(n-1) + 2*c(n-1),
c(n) = 20*a(n-1) + 6*b(n-1) + 4*c(n-1) + 4*d(n-1) + 2*e(n-1),
d(n) = 4*a(n-1), e(n) = 16*a(n-1) + 4*b(n-1),
with a(n), b(n), c(n), d(n), e(n) = 0 for n <= 0 except for a(0)=1.
Recurrence 2:
a(n) = 13*a(n-1) + 20*a(n-2) - 64*a(n-3) + 112*a(n-4) + 224*a(n-5) - 128*a(n-6) for n >= 6. For n < 6, recurrence 1 can be used.
EXAMPLE
4 rotations:
___ ___ ___ ___
| | | | | | (cross sections)
| |___| |___|___|
| | | | |
|_______| |___|___| a(1) = 4 + 1 = 5.
MATHEMATICA
LinearRecurrence[{13, 20, -64, 112, 224, -128}, {1, 5, 89, 1177, 16873, 237977}, 25] (* Paolo Xausa, Oct 02 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gerhard Kirchner, Jan 30 2023
STATUS
approved