%I #15 Jan 25 2023 16:26:42
%S 1,1,1,1,1,1,1,1,4,11,22,32,34,22,13,7,3,1,1,14,123,611,1703,2916,
%T 3371,2935,2046,1171,561,226,81,25,6,1,1,51,1622,22172,134766,430780,
%U 838335,1110757,1086681,831650,519000,272212,122736,48255,16670,5087,1371,325,65,10,1,1,202,25223,975478,13471057,84718407,290637504,619325134
%N Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, ..., n, n, n, n, n] into k nonempty subsets, for 5 <= k <= 5n.
%C A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=5.
%D F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
%H Marko Riedel, <a href="/A360039/b360039.txt">Rows 1 to 9 of triangle, flattened.</a>
%e The triangular array starts:
%e [1]: 1;
%e [2]: 1, 1, 1, 1, 1, 1;
%e [3]: 1, 4, 11, 22, 32, 34, 22, 13, 7, 3, 1;
%e [4]: 1, 14, 123, 611, 1703, 2916, 3371, 2935, 2046, 1171, 561, 226, 81, 25, 6, 1;
%Y Cf. A098233, A360037, A360038, A165436 (row sums).
%K nonn,tabf
%O 1,9
%A _Marko Riedel_, Jan 22 2023