login
A359815
Dirichlet inverse of A359770, where A359770(n) = 1 if n and bigomega(n) are of different parity, otherwise 0.
6
1, -1, 0, 1, 0, 0, 0, -2, -1, 0, 0, -1, 0, 0, -1, 3, 0, 1, 0, -1, -1, 0, 0, 2, -1, 0, 0, -1, 0, 1, 0, -5, -1, 0, -1, -1, 0, 0, -1, 2, 0, 1, 0, -1, 0, 0, 0, -4, -1, 1, -1, -1, 0, 0, -1, 2, -1, 0, 0, -1, 0, 0, 0, 8, -1, 1, 0, -1, -1, 1, 0, 2, 0, 0, 0, -1, -1, 1, 0, -4, 0, 0, 0, -1, -1, 0, -1, 2, 0, 0, -1, -1, -1, 0, -1, 8
OFFSET
1,8
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A359770(n/d) * a(d).
PROG
(PARI)
A359770(n) = ((n-bigomega(n))%2);
memoA359815 = Map();
A359815(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359815, n, &v), v, v = -sumdiv(n, d, if(d<n, A359770(n/d)*A359815(d), 0)); mapput(memoA359815, n, v); (v)));
CROSSREFS
Cf. A001222, A069345, A353556, A353557, A359770, A359816 (parity of terms), A359817 (positions of odd terms).
Cf. also A358777 (Dirichlet inverse of A353557), A359763 [= a(A003961(n))], A359814.
Sequence in context: A060398 A253242 A359814 * A260649 A122855 A140727
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 15 2023
STATUS
approved