login
Dirichlet inverse of function f(n) = 1 + n', where n' stands for the arithmetic derivative of n, A003415(n).
8

%I #12 Jan 17 2023 10:01:24

%S 1,-2,-2,-1,-2,2,-2,-1,-3,0,-2,3,-2,-2,-1,0,-2,6,-2,3,-3,-6,-2,7,-7,

%T -8,-8,3,-2,12,-2,3,-7,-12,-5,9,-2,-14,-9,11,-2,18,-2,3,0,-18,-2,11,

%U -11,6,-13,3,-2,26,-9,15,-15,-24,-2,17,-2,-26,-4,9,-11,30,-2,3,-19,16,-2,9,-2,-32,0,3,-11,36,-2,23,-16,-36

%N Dirichlet inverse of function f(n) = 1 + n', where n' stands for the arithmetic derivative of n, A003415(n).

%H Antti Karttunen, <a href="/A359790/b359790.txt">Table of n, a(n) for n = 1..65537</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} (1+A003415(n/d)) * a(d).

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o memoA359790 = Map();

%o A359790(n) = if(1==n,1,my(v); if(mapisdefined(memoA359790,n,&v), v, v = -sumdiv(n,d,if(d<n,(1+A003415(n/d))*A359790(d),0)); mapput(memoA359790,n,v); (v)));

%Y Cf. A003415, A359780, A359781 (parity of terms), A359782 (positions of even terms), A359783 (of odd terms).

%Y Cf. also A346241, A347082, A347084, A359603, A359789, A359791 [= a(A003961(n))] (for similar constructions).

%K sign

%O 1,2

%A _Antti Karttunen_, Jan 13 2023