Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #23 Jan 05 2023 00:12:31
%S 1,1,4,27,264,3480,57960,1168860,27716080,755797392,23309811000,
%T 802356730560,30495894175296,1268569374923136,57327261461502032,
%U 2796658399257297120,146484112541333548800,8199099498574437696000,488395687438426037605920,30847715523237047711124096,2059258090155754103465678080
%N a(n) = coefficient of x^n/n! in A(x) such that A(x) = Sum_{n>=0} x^n * ( (A(x)^sqrt(n) + x)^sqrt(n) + A(x)^n/(1 + x*A(x)^sqrt(n))^sqrt(n) )/2.
%C In general, if A(x) = 1 + Sum_{n>0} a(n) * x^n/n! = 1 + Sum_{n>0} x^n * ( (A(x)^s(n) + x)^s(n) + 1/(1/A(x)^s(n) + x)^s(n) )/2, for some sequence s(n), then a(1) = 1, a(2) = 2! + 2*a(1)*s(1)^2, a(3) = 3! + 3*s(1)^2 + a(1)*(-6*s(1)^2 + 6*s(2)^2) + a(1)^2*(-3*s(1)^2 + 3*s(1)^4) + a(2)*(3*s(1)^2), and so on. - _Michael Somos_, Jan 02 2023
%H Paul D. Hanna, <a href="/A359461/b359461.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! may be defined by the following.
%F (1) A(x) = Sum_{n>=0} x^n * ( (A(x)^sqrt(n) + x)^sqrt(n) + A(x)^n/(1 + x*A(x)^sqrt(n))^sqrt(n) )/2.
%F (2) A(x) = Sum_{n>=0} x^n * ( (A(x)^sqrt(n) + x)^sqrt(n) + 1/(1/A(x)^sqrt(n) + x)^sqrt(n) )/2.
%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 264*x^4/4! + 3480*x^5/5! + 57960*x^6/6! + 1168860*x^7/7! + 27716080*x^8/8! + 755797392*x^9/9! + 23309811000*x^10/10! + 802356730560*x^11/11! + 30495894175296*x^12/12! + ...
%e a(0) = 1. a(1) = 1. a(2) = 2 + 2*a(1). a(3) = 9 + 6*a(1) + 3*a(2). a(4) = 36 + 60*a(1) + 12*a(1)^2 + 12*a(2) + a(3). - _Michael Somos_, Jan 02 2023
%e SPECIFIC VALUES.
%e A(x) = 2 at x = 0.27668637086273541040814473225204080161288734095023351327332...
%e A(1/4) = 1.60113273405540559575215387233185272854944797616482632040783...
%e A(1/5) = 1.35563819301497088298535445664511164436786966959434923908625...
%o (PARI) /* must set precision suitable for desired number of terms */
%o \p200
%o {a(n) = my(A=1+x); for(i=1,30, A = sum(m=0,n, x^m/2 * ( ((A +x*O(x^n))^sqrt(m) + x)^sqrt(m) + A^m/(1 + x*(A +x*O(x^n))^sqrt(m) )^sqrt(m) ) )); round(n!*polcoeff(A,n))}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A359460, A359462.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 02 2023