login
A359371
Nonmultiples of 4 that have an even number of prime factors (with multiplicity).
5
1, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 54, 55, 57, 58, 62, 65, 69, 74, 77, 81, 82, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 126, 129, 133, 134, 135, 141, 142, 143, 145, 146, 150, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187, 189
OFFSET
1,2
COMMENTS
1, and semiprimes other than 4, multiplied by a product of 0 or more odd semiprimes. - Robert Israel, Dec 28 2022
FORMULA
{k | A008836(k) > 0 and A010873(k) > 0}.
MAPLE
select(t -> numtheory:-bigomega(t)::even, [seq(seq(4*i+j, j=1..3), i=0..100)]); # Robert Israel, Dec 28 2022
MATHEMATICA
Select[Range[200], And[LiouvilleLambda[#] > 0, ! Divisible[#, 4]] &] (* Michael De Vlieger, Dec 28 2022 *)
PROG
(PARI) isA359371(n) = A359370(n);
CROSSREFS
Intersection of A028260 and A042968.
Setwise difference A042968 \ A359373.
Positions of positive terms in A358839.
Cf. A001222, A008836, A010873, A046337 (subsequence), A166486, A359370 (characteristic function).
Sequence in context: A105066 A048283 A169692 * A337287 A145311 A363464
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 28 2022
STATUS
approved