OFFSET
0,3
COMMENTS
The lcm of the rows of the unsigned Lah triangle (for k >= 1).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..390
MAPLE
# Maple has the convention integer lcm() = 1, which covers the case n = 0.
a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)):
seq(a(n), n = 0..20);
MATHEMATICA
{1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
PROG
(Python)
from functools import cache
from sympy import lcm
def A359365 (n: int) -> int:
@cache
def l(n: int) -> list[int]:
if n == 0: return [1]
row: list[int] = l(n - 1) + [1]
row[0] = 0
for k in range(n - 1, 0, -1):
row[k] = row[k] * (n + k - 1) + row[k - 1]
return row
return lcm(l(n)[1:])
print([A359365(n) for n in range(21)])
(PARI) a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 30 2022
STATUS
approved