login
Sum of positions of zeros in the binary expansion of n, where positions are read starting with 1 from the left (big-endian).
24

%I #14 Jan 05 2023 18:30:39

%S 1,0,2,0,5,2,3,0,9,5,6,2,7,3,4,0,14,9,10,5,11,6,7,2,12,7,8,3,9,4,5,0,

%T 20,14,15,9,16,10,11,5,17,11,12,6,13,7,8,2,18,12,13,7,14,8,9,3,15,9,

%U 10,4,11,5,6,0,27,20,21,14,22,15,16,9,23,16,17,10

%N Sum of positions of zeros in the binary expansion of n, where positions are read starting with 1 from the left (big-endian).

%F a(n>0) = binomial(A029837(n)+1,2) - A230877(n).

%e The binary expansion of 100 is (1,1,0,0,1,0,0), with zeros at positions {3,4,6,7}, so a(100) = 20.

%t Table[Total[Join@@Position[IntegerDigits[n,2],0]],{n,0,100}]

%Y The number of zeros is A023416, partial sums A059015.

%Y For positions of 1's we have A230877, reversed A029931.

%Y The reversed version is A359400.

%Y A003714 lists numbers with no successive binary indices.

%Y A030190 gives binary expansion.

%Y A039004 lists the positions of zeros in A345927.

%Y Cf. A000120, A048793, A065359, A069010, A070939, A073642, A083652, A328594, A328595, A359402, A359495.

%K nonn,base

%O 0,3

%A _Gus Wiseman_, Jan 03 2023