login
A359324
Number of divisors of 6*n-2 of form 6*k+5.
5
0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 0, 2, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 2, 1, 1, 1, 1, 3, 0, 1, 0, 1, 2, 1, 0, 1
OFFSET
1,12
LINKS
FORMULA
a(n) = A319995(6*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-3)/(1 - x^(6*k-4)).
MATHEMATICA
a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 14 2023 *)
PROG
(PARI) a(n) = sumdiv(6*n-2, d, d%6==5);
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(6*k-1)))))
(PARI) my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(5*k-3)/(1-x^(6*k-4)))))
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 25 2022
STATUS
approved