%I #21 Jan 14 2023 19:54:26
%S 43890,53130,81510,108570,152490,184470,188790,260610,297570,371490,
%T 416670,475410,509082,549822,593670,637602,648830,756030,757770,
%U 814506,932190,939930,973182,1003002,1045506,1135290,1178310,1222130,1233210,1257762,1278030,1332870,1414910,1417290,1484742
%N Oblong numbers which are products of six distinct primes.
%e 43890 = 209*210 = 2*3*5*7*11*19
%e 53130 = 230*231 = 2*3*5*7*11*23
%e 81510 = 285*286 = 2*3*5*11*13*19
%e 108570 = 329*330 = 2*3*5*7*11*47
%p R:= NULL: count:= 0:
%p for n from 1 while count < 100 do
%p x:= n*(n+1);
%p F:= ifactors(x)[2];
%p if nops(F) = 6 and max(map(t -> t[2],F))=1 then
%p R:= R, x; count:= count+1;
%p fi
%p od:
%p R; # _Robert Israel_, Dec 26 2022
%t Select[(#*(# + 1)) & /@ Range[1250], FactorInteger[#][[;; , 2]] == {1, 1, 1, 1, 1, 1} &] (* _Amiram Eldar_, Dec 26 2022 *)
%Y Intersection of A002378 and A067885.
%Y Cf. A359304.
%K nonn
%O 1,1
%A _Massimo Kofler_, Dec 26 2022